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Abstract
We elucidate the structure of the hierarchy of the connected operators that
commute with the Markov matrix of the totally asymmetric exclusion process.
We derive the combinatorial formula for the connected operators that was
conjectured in our previous work.

PACS numbers: 02.30.Ik, 02.50.−r, 75.10.Pq

1. Introduction

The asymmetric simple exclusion process (ASEP) is a lattice model of particles with hard core
interactions that has become a paradigm in the field of non-equilibrium statistical mechanics
(for reviews, see e.g., Derrida (1998), Golinelli and Mallick (2006)). In a recent work
(Golinelli and Mallick 2007), we used the algebraic Bethe ansatz to construct the transfer
matrix of the totally asymmetric exclusion process (TASEP), and obtained a hierarchy of
local connected operators that commute with the TASEP Markov matrix. We conjectured an
explicit combinatorial formula for these operators. In the present work, we prove analytically
this formula. In section 2, useful algebraic results are briefly reviewed so that this work can
be read in a fairly self-contained manner.

2. The TASEP algebra

The TASEP on a periodic 1-d ring with L sites evolves according to the following dynamics:
during the time interval [t, t + dt], a particle on a site i jumps with probability dt to the
neighbouring site i +1, if this site is empty (exclusion rule). This dynamics is entirely encoded
in a 2L × 2L Markov matrix M = ∑L

i=1 Mi , which can be written as a sum of the local jump
operators Mi satisfying a set of algebraic relations

M2
i = −Mi, (1)

MiMi+1Mi = Mi+1MiMi+1 = 0, (2)
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[Mi,Mj ] = 0 if |i − j | > 1. (3)

Besides, we have periodic boundary conditions on the ring: Mi+L = Mi . Any product of the
Mi’s will be called a word. The length of a given word is the minimal number of operators Mi

required to write it. A reduced word cannot be simplified further.
Consider any word W and call I(W) the set of indices i of the operators Mi that compose

it (indices are enumerated without repetitions). We remark that, if W is not annihilated by
application of rule (2), the simplification rules (1), (3) do not alter the set I(W), i.e., these
rules do not introduce any new index or suppress any existing index in I(W).

A simple word of length k is defined as a word Mσ(1),Mσ(2), . . . ,Mσ(k), where σ is a
permutation on the set {1, 2, . . . , k}. The commutation rule (3) implies that only the relative
position of Mi with respect to Mi±1 matters. A simple word of length k can therefore be
written as Wk(s2, s3, . . . , sk) where the Boolean variable sj for 2 � j � k is defined as
follows: sj = 0 if Mj is on the left of Mj−1 and sj = 1 if Mj is on the right of Mj−1.
Equivalently, Wk(s2, s3, . . . , sk) is uniquely defined by the recursion relation

Wk(s2, s3, . . . , sk−1, 1) = Wk−1(s2, s3, . . . , sk−1)Mk, (4)

Wk(s2, s3, . . . , sk−1, 0) = MkWk−1(s2, s3, . . . , sk−1). (5)

The set of the 2k−1 simple words of length k will be called Wk . For a simple word Wk , we
define u(Wk) to be the number of inversions in Wk , i.e., the number of times that Mj is on the
left of Mj−1:

u(Wk(s2, s3, . . . , sk)) =
k∑

j=2

(1 − sj ). (6)

We remark that simple words are connected, i.e., they cannot be factorized in two (or
more) commuting words.

We introduce the ring ordered product O() which acts as follows on words of the type
W = Mi1Mi2 . . . Mik , with 1 � i1 < i2 < · · · < ik � L.

(i) If i1 > 1 or ik < L, we define O(W) = W , i.e., W is well ordered.
(ii) If i1 = 1 and ik = L, we first write W as a product of two blocks, W = AB, such

that B = MbMb+1 · · · ML is the maximal block of matrices with consecutive indices that
contains ML, and A = M1Mi2 · · · Mia , with ia < b − 1, contains the remaining terms.
We then define

O(W) = O(AB) = BA = MbMb+1 · · ·MLM1Mi2 · · · Mia . (7)

(iii) The previous definition makes sense only for k < L. Indeed, when k = L, we have
W = M1M2 · · · ML and it is not possible to split W in two different blocks A and B. For
this special case, we define

O(M1M2 · · ·ML) = |1, 1, . . . , 1〉〈1, 1, . . . , 1|. (8)

3. A formula for the connected operators

The algebraic Bethe ansatz leads to a one-parameter commuting family of transfer matrices,
t (λ), containing the translation operator T = t (1) and the Markov matrix M = t ′(0). This
transfer matrix can be expanded in terms of non-local generalized Hamiltonians Hk , acting on
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the configuration space

t (λ) = 1 +
L∑

k=1

λkHk. (9)

(Note that t (λ) was denoted by tg(λ) in Golinelli and Mallick (2007)). The operator Hk is a
homogeneous sum of words of length k:

Hk =
∑

1�i1<i2<···<ik�L

O
(
Mi1Mi2 · · ·Mik

)
, (10)

where O() is the ring-ordered product. Therefore, we have

t (λ) = O
(

L∏
i=1

(1 + λMi)

)
. (11)

We remark that at most L − 1 operators Hk have a non-trivial action. As usual, the local
connected and extensive operators are obtained by taking the logarithm of the transfer matrix.
For k � 1, the connected Hamiltonians Fk are defined as

ln t (λ) =
∞∑

k=1

λk

k
Fk or, equivalently

∞∑
k=1

λkFk = λt (λ)−1t ′(λ). (12)

The second equation is obtained by taking the derivative of the first one with respect to λ and
recalling that t (λ) commutes with t ′(λ).

3.1. Elimination of the ring-ordered product

Expanding t (λ)−1 with respect to λ, formula (12) allows us to calculate Fk as a polynomial
function of the Hk’s. By using (10), we observe that Fk is a priori a linear combination of
products of k local operators Mi . However, this expression can be simplified by using the
algebraic rules (1), (2) and (3) and in fine, Fk will be a linear combination of reduced words
of length j � k. We know from formula (10) that at most L− 1 operators Hk are independent
in a system of size L; we shall therefore calculate Fk only for k � L − 1. Thus, we need to
consider reduced words of length j � L − 1.

Let W be such a word and I(W) be the set of indices of the operators Mi that compose
W ; our aim is to calculate its prefactor from equation (12). Because the rules (1) and (3) do
not suppress or add any new index, the following property is true: if a word W ′ appearing
in λt (λ)−1t ′(λ) is such that I(W ′) �= I(W) then even after simplification, W ′ will remain
different from W . Therefore, the prefactor of W in

∑
λkFk is the same as the prefactor of W

in λtI(λ)−1t ′I(λ), where

tI(λ) = O
(∏

i∈I
(1 + λMi)

)
with I(W) ⊂ I. (13)

Because Fk commutes with the translation operator T, then the prefactor of W =
Mi1Mi2 · · ·Mij is the same as the prefactor of T rMT −r = Mr+i1Mr+i2 · · · Mr+ij for any
r = 1, . . . , L − 1. Furthermore, any word W of size k � L− 1 is equivalent, by a translation,
to a word that contains M1 and not ML: indeed, there exists at least one index i0 such that
i0 /∈ I(W) and (i0 + 1) ∈ I(W) and it is thus sufficient to translate W by r = L − i0.

In conclusion, it suffices to study in expression (12) the reduced words W with set of
indices included in I∗ = {1, 2, . . . , L − 1}. Because the index L does not appear in I∗, the
ring-ordered product has a trivial action in equation (13) and we have

tI∗(λ) = (1 + λM1)(1 + λM2) · · · (1 + λML−1). (14)
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We have thus been able to eliminate the ring-ordered product using the TASEP algebra and
the translation operator.

3.2. Calculation of the connected operators

Differentiating tI∗(λ) with respect to λ in equation (14), we have

t ′I∗(λ) =
L−1∑
i=1

(1 + λM1) · · · (1 + λMi−1)Mi(1 + λMi+1) · · · (1 + λML−1). (15)

Using relation (1), we deduce that for any λ �= 1:

(1 + λMi)
−1 = (1 + αMi) with α = λ

λ − 1
. (16)

Therefore, we have

tI∗(λ)−1 = (1 + αML−1)(1 + αML−2) · · · (1 + αM1). (17)

Noting that λ(1 + αMi)Mi = −αMi , we deduce

λtI∗(λ)−1t ′I∗(λ) = −α

L−1∑
i=1

(1 + αML−1) · · · (1 + αMi+1)Mi(1 + λMi+1) · · · (1 + λML−1).

(18)

The ith term in this sum contains words with indices between i and L − 1. Because we are
looking for the words that contain the operator M1, we must consider only the first term in this
sum, which we note by Q:

Q = −α(1 + αML−1) · · · (1 + αM2)M1(1 + λM2) · · · (1 + λML−1). (19)

In the appendix, we show that

Q = R1 + R2 + · · · + RL−1, (20)

where Ri is defined by the recursion

R1 = −αM1, (21)

Ri = λRi−1Mi + αMiRi−1 for i � 2. (22)

To summarize, all the words in
∑∞

k=1 λkFk that contain M1 and not ML are given by
Q = R1 + R2 + · · · + RL−1. From the recursion relation (22), we deduce that Ri is a
linear combination of the 2i−1 simple words Wi(s2, s3, . . . , si) defined in equations (4), (5).
Furthermore, we observe from (22) that a factor λ appears if si = 1 and a factor α = λ/(λ−1)

appears if si = 0. Therefore, the coefficient f (W) of W = Wi(s2, s3, . . . , si) in Q is given by

f (W) = (−1)u
λi

(1 − λ)u+1
= (−1)u

∞∑
j=0

(
u + j

j

)
λi+j , (23)

where i is the length of W and u = u(W) is its inversion number, defined in equation (6). We
have thus shown that

Q =
L−1∑
i=1

∑
W∈Wi

f (W)W =
L−1∑
i=1

∑
W∈Wi

W

∞∑
j=0

(−1)u(W)

(
u(W) + j

j

)
λi+j , (24)

where Wi is the set of simple words of length i.
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Finally, we recall that the coefficient in
∑∞

k=1 λkFk of a reduced word W that contains M1

and not ML is the same as its coefficient in Q. Extracting the term of order λk in equation (24),
we deduce that any word W in Fk that contains M1 and not ML is a simple word of length
i � k and its prefactor is given by (−1)u(W)

(
u(W)+k−i

k−i

)
.

The full expression of Fk is obtained by applying the translation operator to the expression
(24); indeed any word in Fk can be uniquely obtained by translating a simple word in Fk that
contains M1 and not ML. We conclude that for k < L,

Fk = T
k∑

i=1

∑
W∈Wi

(−1)u(W)

(
k − i + u(W)

k − i

)
W, (25)

where T is the translation symmetrizator that acts on any operator A as follows: T A =∑L−1
i=0 T iAT −i . The presence of T in equation (25) insures that Fk is invariant by translation

on the periodic system of size L. All simple words being connected; formula (25) implies that
Fk is connected.

4. Conclusion

The exact combinatorial expression (25) for the connected operators that commute with the
TASEP Markov matrix fully elucidates the hierarchical structure derived from the algebraic
Bethe ansatz. It would be of a great interest to extend this result to the partially asymmetric
exclusion process (PASEP) in which a particle can make forward and backward jumps with
probabilities p and q, respectively. In particular, we recall that the symmetric exclusion process
is equivalent to the Heisenberg spin chain: in this case the connected operators have been
calculated for the lowest orders (Fabricius et al 1990). This is a challenging and difficult
problem. In our derivation we used a fundamental property of the TASEP algebra: rules
(1)–(3) when applied to a word W either cancel W or conserve the set of indices I(W).
However, the PASEP algebra associated violates this crucial property because there we have
MiMi+1Mi = pqMi. Therefore the method followed here does not have a straightforward
extension to the PASEP case.

Appendix. Proof of equation (20)

Let us define the following series:

Q1 = −αM1, (A.1)

Qi = (1 + αMi)Qi−1(1 + λMi) for i � 2, (A.2)

so that Q defined in equation (19) is given by Q = QL−1. Let us consider Ri defined by
the recursion relation (22). The indices that appear in the words of Qi and Ri belong to
{1, 2, . . . , i}. Therefore, we have

[Rj ,Mi] = 0 for j � i − 2, (A.3)

because the operators M1,M2, . . . , Mj that compose Rj commute with Mi . From
equations (A.3) and (16), we obtain

(1 + αMi)Rj (1 + λMi) = Rj for j � i − 2. (A.4)

Furthermore, from (22), we obtain

MiRi−1Mi = λMiRi−2Mi−1Mi + αMiMi−1Ri−2Mi. (A.5)
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Because Mi commutes with Ri−2, we deduce from MiMi−1Mi = 0 that

MiRi−1Mi = 0. (A.6)

Using equation (A.6), we find

(1 + αMi)Ri−1(1 + λMi) = Ri−1 + λRi−1Mi + αMiRi−1 = Ri−1 + Ri. (A.7)

From equations (A.4) and (A.7), we find that the unique solution of the recursion relation
(A.2) is given by Qi = R1 + R2 + · · · + Ri. Then Q = QL−1 is given by equation (20).
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