Connected operators for the totally asymmetric exclusion process

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 J. Phys. A: Math. Theor. 4013231
(http://iopscience.iop.org/1751-8121/40/44/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.146
The article was downloaded on 03/06/2010 at 06:23

Please note that terms and conditions apply.

Connected operators for the totally asymmetric exclusion process

O Golinelli and K Mallick

Service de Physique Théorique, Cea Saclay, 91191 Gif, France

Received 10 May 2007, in final form 20 September 2007
Published 16 October 2007
Online at stacks.iop.org/JPhysA/40/13231

Abstract

We elucidate the structure of the hierarchy of the connected operators that commute with the Markov matrix of the totally asymmetric exclusion process. We derive the combinatorial formula for the connected operators that was conjectured in our previous work.

PACS numbers: $02.30 . \mathrm{Ik}, 02.50 .-\mathrm{r}, 75.10 . \mathrm{Pq}$

1. Introduction

The asymmetric simple exclusion process (ASEP) is a lattice model of particles with hard core interactions that has become a paradigm in the field of non-equilibrium statistical mechanics (for reviews, see e.g., Derrida (1998), Golinelli and Mallick (2006)). In a recent work (Golinelli and Mallick 2007), we used the algebraic Bethe ansatz to construct the transfer matrix of the totally asymmetric exclusion process (TASEP), and obtained a hierarchy of local connected operators that commute with the TASEP Markov matrix. We conjectured an explicit combinatorial formula for these operators. In the present work, we prove analytically this formula. In section 2, useful algebraic results are briefly reviewed so that this work can be read in a fairly self-contained manner.

2. The TASEP algebra

The TASEP on a periodic 1-d ring with L sites evolves according to the following dynamics: during the time interval $[t, t+\mathrm{d} t]$, a particle on a site i jumps with probability $\mathrm{d} t$ to the neighbouring site $i+1$, if this site is empty (exclusion rule). This dynamics is entirely encoded in a $2^{L} \times 2^{L}$ Markov matrix $M=\sum_{i=1}^{L} M_{i}$, which can be written as a sum of the local jump operators M_{i} satisfying a set of algebraic relations

$$
\begin{align*}
& M_{i}^{2}=-M_{i} \tag{1}\\
& M_{i} M_{i+1} M_{i}=M_{i+1} M_{i} M_{i+1}=0 \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\left[M_{i}, M_{j}\right]=0 \quad \text { if } \quad|i-j|>1 \tag{3}
\end{equation*}
$$

Besides, we have periodic boundary conditions on the ring: $M_{i+L}=M_{i}$. Any product of the M_{i} 's will be called a word. The length of a given word is the minimal number of operators M_{i} required to write it. A reduced word cannot be simplified further.

Consider any word W and $\operatorname{call} \mathcal{I}(W)$ the set of indices i of the operators M_{i} that compose it (indices are enumerated without repetitions). We remark that, if W is not annihilated by application of rule (2), the simplification rules (1), (3) do not alter the set $\mathcal{I}(W)$, i.e., these rules do not introduce any new index or suppress any existing index in $\mathcal{I}(W)$.

A simple word of length k is defined as a word $M_{\sigma(1)}, M_{\sigma(2)}, \ldots, M_{\sigma(k)}$, where σ is a permutation on the set $\{1,2, \ldots, k\}$. The commutation rule (3) implies that only the relative position of M_{i} with respect to $M_{i \pm 1}$ matters. A simple word of length k can therefore be written as $W_{k}\left(s_{2}, s_{3}, \ldots, s_{k}\right)$ where the Boolean variable s_{j} for $2 \leqslant j \leqslant k$ is defined as follows: $s_{j}=0$ if M_{j} is on the left of M_{j-1} and $s_{j}=1$ if M_{j} is on the right of M_{j-1}. Equivalently, $W_{k}\left(s_{2}, s_{3}, \ldots, s_{k}\right)$ is uniquely defined by the recursion relation

$$
\begin{align*}
& W_{k}\left(s_{2}, s_{3}, \ldots, s_{k-1}, 1\right)=W_{k-1}\left(s_{2}, s_{3}, \ldots, s_{k-1}\right) M_{k}, \tag{4}\\
& W_{k}\left(s_{2}, s_{3}, \ldots, s_{k-1}, 0\right)=M_{k} W_{k-1}\left(s_{2}, s_{3}, \ldots, s_{k-1}\right) . \tag{5}
\end{align*}
$$

The set of the 2^{k-1} simple words of length k will be called \mathcal{W}_{k}. For a simple word W_{k}, we define $u\left(W_{k}\right)$ to be the number of inversions in W_{k}, i.e., the number of times that M_{j} is on the left of M_{j-1} :

$$
\begin{equation*}
u\left(W_{k}\left(s_{2}, s_{3}, \ldots, s_{k}\right)\right)=\sum_{j=2}^{k}\left(1-s_{j}\right) \tag{6}
\end{equation*}
$$

We remark that simple words are connected, i.e., they cannot be factorized in two (or more) commuting words.

We introduce the ring ordered product $\mathcal{O}()$ which acts as follows on words of the type $W=M_{i_{1}} M_{i_{2}} \ldots M_{i_{k}}$, with $1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant L$.
(i) If $i_{1}>1$ or $i_{k}<L$, we define $\mathcal{O}(W)=W$, i.e., W is well ordered.
(ii) If $i_{1}=1$ and $i_{k}=L$, we first write W as a product of two blocks, $W=A B$, such that $B=M_{b} M_{b+1} \cdots M_{L}$ is the maximal block of matrices with consecutive indices that contains M_{L}, and $A=M_{1} M_{i_{2}} \cdots M_{i_{a}}$, with $i_{a}<b-1$, contains the remaining terms. We then define

$$
\begin{equation*}
\mathcal{O}(W)=\mathcal{O}(A B)=B A=M_{b} M_{b+1} \cdots M_{L} M_{1} M_{i_{2}} \cdots M_{i_{a}} . \tag{7}
\end{equation*}
$$

(iii) The previous definition makes sense only for $k<L$. Indeed, when $k=L$, we have $W=M_{1} M_{2} \cdots M_{L}$ and it is not possible to split W in two different blocks A and B. For this special case, we define

$$
\begin{equation*}
\mathcal{O}\left(M_{1} M_{2} \cdots M_{L}\right)=|1,1, \ldots, 1\rangle\langle 1,1, \ldots, 1| . \tag{8}
\end{equation*}
$$

3. A formula for the connected operators

The algebraic Bethe ansatz leads to a one-parameter commuting family of transfer matrices, $t(\lambda)$, containing the translation operator $T=t(1)$ and the Markov matrix $M=t^{\prime}(0)$. This transfer matrix can be expanded in terms of non-local generalized Hamiltonians H_{k}, acting on
the configuration space

$$
\begin{equation*}
t(\lambda)=1+\sum_{k=1}^{L} \lambda^{k} H_{k} \tag{9}
\end{equation*}
$$

(Note that $t(\lambda)$ was denoted by $t_{g}(\lambda)$ in Golinelli and Mallick (2007)). The operator H_{k} is a homogeneous sum of words of length k :

$$
\begin{equation*}
H_{k}=\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant L} \mathcal{O}\left(M_{i_{1}} M_{i_{2}} \cdots M_{i_{k}}\right), \tag{10}
\end{equation*}
$$

where $\mathcal{O}()$ is the ring-ordered product. Therefore, we have

$$
\begin{equation*}
t(\lambda)=\mathcal{O}\left(\prod_{i=1}^{L}\left(1+\lambda M_{i}\right)\right) \tag{11}
\end{equation*}
$$

We remark that at most $L-1$ operators H_{k} have a non-trivial action. As usual, the local connected and extensive operators are obtained by taking the logarithm of the transfer matrix. For $k \geqslant 1$, the connected Hamiltonians F_{k} are defined as

$$
\begin{equation*}
\ln t(\lambda)=\sum_{k=1}^{\infty} \frac{\lambda^{k}}{k} F_{k} \quad \text { or, equivalently } \quad \sum_{k=1}^{\infty} \lambda^{k} F_{k}=\lambda t(\lambda)^{-1} t^{\prime}(\lambda) \tag{12}
\end{equation*}
$$

The second equation is obtained by taking the derivative of the first one with respect to λ and recalling that $t(\lambda)$ commutes with $t^{\prime}(\lambda)$.

3.1. Elimination of the ring-ordered product

Expanding $t(\lambda)^{-1}$ with respect to λ, formula (12) allows us to calculate F_{k} as a polynomial function of the H_{k} 's. By using (10), we observe that F_{k} is a priori a linear combination of products of k local operators M_{i}. However, this expression can be simplified by using the algebraic rules (1), (2) and (3) and in fine, F_{k} will be a linear combination of reduced words of length $j \leqslant k$. We know from formula (10) that at most $L-1$ operators H_{k} are independent in a system of size L; we shall therefore calculate F_{k} only for $k \leqslant L-1$. Thus, we need to consider reduced words of length $j \leqslant L-1$.

Let W be such a word and $\mathcal{I}(W)$ be the set of indices of the operators M_{i} that compose W; our aim is to calculate its prefactor from equation (12). Because the rules (1) and (3) do not suppress or add any new index, the following property is true: if a word W^{\prime} appearing in $\lambda t(\lambda)^{-1} t^{\prime}(\lambda)$ is such that $\mathcal{I}\left(W^{\prime}\right) \neq \mathcal{I}(W)$ then even after simplification, W^{\prime} will remain different from W. Therefore, the prefactor of W in $\sum \lambda^{k} F_{k}$ is the same as the prefactor of W in $\lambda t_{\mathcal{I}}(\lambda)^{-1} t_{\mathcal{I}}^{\prime}(\lambda)$, where

$$
\begin{equation*}
t_{\mathcal{I}}(\lambda)=\mathcal{O}\left(\prod_{i \in \mathcal{I}}\left(1+\lambda M_{i}\right)\right) \quad \text { with } \quad \mathcal{I}(W) \subset \mathcal{I} \tag{13}
\end{equation*}
$$

Because F_{k} commutes with the translation operator T, then the prefactor of $W=$ $M_{i_{1}} M_{i_{2}} \cdots M_{i_{j}}$ is the same as the prefactor of $T^{r} M T^{-r}=M_{r+i_{1}} M_{r+i_{2}} \cdots M_{r+i_{j}}$ for any $r=1, \ldots, L-1$. Furthermore, any word W of size $k \leqslant L-1$ is equivalent, by a translation, to a word that contains M_{1} and not M_{L} : indeed, there exists at least one index i_{0} such that $i_{0} \notin \mathcal{I}(W)$ and $\left(i_{0}+1\right) \in \mathcal{I}(W)$ and it is thus sufficient to translate W by $r=L-i_{0}$.

In conclusion, it suffices to study in expression (12) the reduced words W with set of indices included in $\mathcal{I}^{*}=\{1,2, \ldots, L-1\}$. Because the index L does not appear in \mathcal{I}^{*}, the ring-ordered product has a trivial action in equation (13) and we have

$$
\begin{equation*}
t_{\mathcal{L}^{*}}(\lambda)=\left(1+\lambda M_{1}\right)\left(1+\lambda M_{2}\right) \cdots\left(1+\lambda M_{L-1}\right) \tag{14}
\end{equation*}
$$

We have thus been able to eliminate the ring-ordered product using the TASEP algebra and the translation operator.

3.2. Calculation of the connected operators

Differentiating $t_{\mathcal{I}^{*}}(\lambda)$ with respect to λ in equation (14), we have

$$
\begin{equation*}
t_{\mathcal{I}^{*}}^{\prime}(\lambda)=\sum_{i=1}^{L-1}\left(1+\lambda M_{1}\right) \cdots\left(1+\lambda M_{i-1}\right) M_{i}\left(1+\lambda M_{i+1}\right) \cdots\left(1+\lambda M_{L-1}\right) \tag{15}
\end{equation*}
$$

Using relation (1), we deduce that for any $\lambda \neq 1$:

$$
\begin{equation*}
\left(1+\lambda M_{i}\right)^{-1}=\left(1+\alpha M_{i}\right) \quad \text { with } \quad \alpha=\frac{\lambda}{\lambda-1} . \tag{16}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
t_{\mathcal{I}^{*}}(\lambda)^{-1}=\left(1+\alpha M_{L-1}\right)\left(1+\alpha M_{L-2}\right) \cdots\left(1+\alpha M_{1}\right) \tag{17}
\end{equation*}
$$

Noting that $\lambda\left(1+\alpha M_{i}\right) M_{i}=-\alpha M_{i}$, we deduce
$\lambda t_{\mathcal{I}^{*}}(\lambda)^{-1} t_{\mathcal{I}^{*}}^{\prime}(\lambda)=-\alpha \sum_{i=1}^{L-1}\left(1+\alpha M_{L-1}\right) \cdots\left(1+\alpha M_{i+1}\right) M_{i}\left(1+\lambda M_{i+1}\right) \cdots\left(1+\lambda M_{L-1}\right)$.

The i th term in this sum contains words with indices between i and $L-1$. Because we are looking for the words that contain the operator M_{1}, we must consider only the first term in this sum, which we note by Q :

$$
\begin{equation*}
Q=-\alpha\left(1+\alpha M_{L-1}\right) \cdots\left(1+\alpha M_{2}\right) M_{1}\left(1+\lambda M_{2}\right) \cdots\left(1+\lambda M_{L-1}\right) \tag{19}
\end{equation*}
$$

In the appendix, we show that

$$
\begin{equation*}
Q=R_{1}+R_{2}+\cdots+R_{L-1} \tag{20}
\end{equation*}
$$

where R_{i} is defined by the recursion

$$
\begin{align*}
& R_{1}=-\alpha M_{1} \tag{21}\\
& R_{i}=\lambda R_{i-1} M_{i}+\alpha M_{i} R_{i-1} \quad \text { for } \quad i \geqslant 2 . \tag{22}
\end{align*}
$$

To summarize, all the words in $\sum_{k=1}^{\infty} \lambda^{k} F_{k}$ that contain M_{1} and not M_{L} are given by $Q=R_{1}+R_{2}+\cdots+R_{L-1}$. From the recursion relation (22), we deduce that R_{i} is a linear combination of the 2^{i-1} simple words $W_{i}\left(s_{2}, s_{3}, \ldots, s_{i}\right)$ defined in equations (4), (5). Furthermore, we observe from (22) that a factor λ appears if $s_{i}=1$ and a factor $\alpha=\lambda /(\lambda-1)$ appears if $s_{i}=0$. Therefore, the coefficient $f(W)$ of $W=W_{i}\left(s_{2}, s_{3}, \ldots, s_{i}\right)$ in Q is given by

$$
\begin{equation*}
f(W)=(-1)^{u} \frac{\lambda^{i}}{(1-\lambda)^{u+1}}=(-1)^{u} \sum_{j=0}^{\infty}\binom{u+j}{j} \lambda^{i+j} \tag{23}
\end{equation*}
$$

where i is the length of W and $u=u(W)$ is its inversion number, defined in equation (6). We have thus shown that

$$
\begin{equation*}
Q=\sum_{i=1}^{L-1} \sum_{W \in \mathcal{W}_{i}} f(W) W=\sum_{i=1}^{L-1} \sum_{W \in \mathcal{W}_{i}} W \sum_{j=0}^{\infty}(-1)^{u(W)}\binom{u(W)+j}{j} \lambda^{i+j} \tag{24}
\end{equation*}
$$

where \mathcal{W}_{i} is the set of simple words of length i.

Finally, we recall that the coefficient in $\sum_{k=1}^{\infty} \lambda^{k} F_{k}$ of a reduced word W that contains M_{1} and not M_{L} is the same as its coefficient in Q. Extracting the term of order λ^{k} in equation (24), we deduce that any word W in F_{k} that contains M_{1} and not M_{L} is a simple word of length $i \leqslant k$ and its prefactor is given by $(-1)^{u(W)}\binom{u(W)+k-i}{k-i}$.

The full expression of F_{k} is obtained by applying the translation operator to the expression (24); indeed any word in F_{k} can be uniquely obtained by translating a simple word in F_{k} that contains M_{1} and not M_{L}. We conclude that for $k<L$,

$$
\begin{equation*}
F_{k}=\mathcal{T} \sum_{i=1}^{k} \sum_{W \in \mathcal{W}_{i}}(-1)^{u(W)}\binom{k-i+u(W)}{k-i} W \tag{25}
\end{equation*}
$$

where \mathcal{T} is the translation symmetrizator that acts on any operator A as follows: $\mathcal{T} A=$ $\sum_{i=0}^{L-1} T^{i} A T^{-i}$. The presence of \mathcal{T} in equation (25) insures that F_{k} is invariant by translation on the periodic system of size L. All simple words being connected; formula (25) implies that F_{k} is connected.

4. Conclusion

The exact combinatorial expression (25) for the connected operators that commute with the TASEP Markov matrix fully elucidates the hierarchical structure derived from the algebraic Bethe ansatz. It would be of a great interest to extend this result to the partially asymmetric exclusion process (PASEP) in which a particle can make forward and backward jumps with probabilities p and q, respectively. In particular, we recall that the symmetric exclusion process is equivalent to the Heisenberg spin chain: in this case the connected operators have been calculated for the lowest orders (Fabricius et al 1990). This is a challenging and difficult problem. In our derivation we used a fundamental property of the TASEP algebra: rules (1)-(3) when applied to a word W either cancel W or conserve the set of indices $\mathcal{I}(W)$. However, the PASEP algebra associated violates this crucial property because there we have $M_{i} M_{i+1} M_{i}=p q M_{i}$. Therefore the method followed here does not have a straightforward extension to the PASEP case.

Appendix. Proof of equation (20)

Let us define the following series:

$$
\begin{align*}
& Q_{1}=-\alpha M_{1} \tag{A.1}\\
& Q_{i}=\left(1+\alpha M_{i}\right) Q_{i-1}\left(1+\lambda M_{i}\right) \quad \text { for } \quad i \geqslant 2 \tag{A.2}
\end{align*}
$$

so that Q defined in equation (19) is given by $Q=Q_{L-1}$. Let us consider R_{i} defined by the recursion relation (22). The indices that appear in the words of Q_{i} and R_{i} belong to $\{1,2, \ldots, i\}$. Therefore, we have

$$
\begin{equation*}
\left[R_{j}, M_{i}\right]=0 \quad \text { for } \quad j \leqslant i-2 \tag{A.3}
\end{equation*}
$$

because the operators $M_{1}, M_{2}, \ldots, M_{j}$ that compose R_{j} commute with M_{i}. From equations (A.3) and (16), we obtain

$$
\begin{equation*}
\left(1+\alpha M_{i}\right) R_{j}\left(1+\lambda M_{i}\right)=R_{j} \quad \text { for } \quad j \leqslant i-2 \tag{A.4}
\end{equation*}
$$

Furthermore, from (22), we obtain

$$
\begin{equation*}
M_{i} R_{i-1} M_{i}=\lambda M_{i} R_{i-2} M_{i-1} M_{i}+\alpha M_{i} M_{i-1} R_{i-2} M_{i} \tag{A.5}
\end{equation*}
$$

Because M_{i} commutes with R_{i-2}, we deduce from $M_{i} M_{i-1} M_{i}=0$ that

$$
\begin{equation*}
M_{i} R_{i-1} M_{i}=0 \tag{A.6}
\end{equation*}
$$

Using equation (A.6), we find

$$
\begin{equation*}
\left(1+\alpha M_{i}\right) R_{i-1}\left(1+\lambda M_{i}\right)=R_{i-1}+\lambda R_{i-1} M_{i}+\alpha M_{i} R_{i-1}=R_{i-1}+R_{i} . \tag{A.7}
\end{equation*}
$$

From equations (A.4) and (A.7), we find that the unique solution of the recursion relation (A.2) is given by $Q_{i}=R_{1}+R_{2}+\cdots+R_{i}$. Then $Q=Q_{L-1}$ is given by equation (20).

References

Derrida B 1998 An exactly soluble non-equilibrium system: the asymmetric simple exclusion process Phys. Rep. 30165
Fabricius K, Mütter K-H and Grosse H 1990 Hidden symmetries in the one-dimensional antiferromagnetic Heisenberg model Phys. Rev. B 424656
Golinelli O and Mallick K 2006 The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics J. Phys. A: Math. Gen. 3912679
Golinelli O and Mallick K 2007 Family of commuting operators for the totally asymmetric exclusion process J. Phys. A: Math. Theor. 405795

